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abstract

This essay gives a short, informal account of the development of
digital logic from the Pleistocene to the Manhattan Project, the in-
troduction of reversible circuits, and Richard Feynman’s allied pro-
posal for quantum computing. We argue that Feynman’s state-based
analogy is not the only way to arrive at quantum computing, nor in-
deed the simplest. To illustrate, we imagine an alternate timeline in
which John von Neumann skipped Operation Crossroads to debug
a military computer, got tickled by the problem, and discovered a
completely different picture of quantum computing—in 1946.

Feynman suggested we “quantize” state, and turn classically re-
versible circuits into quantum reversible, unitary ones. In contrast,
we speculate that von Neumann, with his background in functional
analysis and quantum logic, would seek to “quantize” the operators
of Boolean algebra, and with tools made available in 1946 could suc-
cessfully do so. This leads to a simpler, more flexible circuit calculus
and beautiful parallels to classical logic, as we detail in a forthcoming
companion paper.

Torsor Labs
YAW- 0-2-25א!

mailto:david@torsor.io
torsor.io


a short history of rocks 2

0 Overview

This essay gives a short history of human-rock interactions, argu-
ing that, far from tricking rocks into doing math, they tricked us; or
rather, the trickery is mutual and ongoing. We support this thesis by
example, progressing through number systems, binary mysticism,
Boolean logic, digital circuits, and large-scale programmable archi-
tectures, drawing attention at each juncture to the collaborative role
played by our igneous friends. We conclude the first half with quan-
tum computing, in some sense the apotheosis of this mutual trickery.

History abhors a linear narrative; in our case, the linear narrative
is undone by the Manhattan Project, which led to a long chill be-
tween the physicists who worked on the bomb—including Richard
Feynmann—and the ductile rocks that helped turn an equation as
beautiful as E = mc2 into Little Boy and Fat Man. The physicists
left rocks behind and turned to theory. Although the rocks tried to
teach us quantum, for a long time, we didn’t listen; when eventually,
reluctantly, we did, the transmission was garbled.

In the second half of this essay, we try to clarify what the rocks
might have meant, using the clues scattered throughout history and
some generous counterfactual license. It may be that, in a branch
of the wavefunction not so far from this one, John von Neumann
invented quantum computing 35 years before Feynman, using func-
tional analysis to generalize Shannon’s algebra of circuits. We give
a fuller development of this formalism elsewhere, but hope that in
the mean time, the reader is a little more attuned to the whispering
presence of the inanimate world.
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1 The other calculus

Unary programming in silico, aka tallying.
Tallies exist because we ran out of fingers.

The development of mathematics and technology is deeply tied to
our interaction with rocks. During the Pleistocene, humans discov-
ered the number 1 and began to count in unary on their fingers, with
pebbles, or by repetitive scratches onto stone or slate. We can think
of these techniques as a unary programming language (a formal sys-
tem for representing algorithms) and the rocks as an early form of
computer (a means of carrying those algorithms out).

The transition from hands to tally marks is instructive. Tallies were
invented because we ran out of fingers; each round of five marks
effectively supplies an extra hand. In fact, the diagonal slash for
grouping tallies is an abstraction of the hand, an abstraction forced
by computational necessity. As civilization grew, numbers grew
with it, and our number systems—with associated abstractions and
algorithms—had to keep up. Tally marks became sign-value systems 𒌋𒁹𒁹𒁹 𒁹 𒌋𒁹 𒅓𒌋 𒌋

Ontogeny recapitulates phylogeny in
Babylonian numerals. Left. A unary tally
for 3. Middle. Sign-value representation of
11. Right. 1277 in place-value notation.

(like Roman numerals, or Sumerian/Babylonian cuneiform numerals
below 60) and then place-value systems (like Babylonian sexagesi-
mals). The sequence of hierarchizing macros in between was not so
different from the slash which replaced the hand.

During this evolution, stones were supplanted by more portable
computers like clay, papyrus and parchment. The rocks—our stead-

Gottfried Leibniz (1646–1716). Mathemati-
cian, Sinophile, and peruke enthusiast.

fast, inanimate friends—would eventually make a comeback, but
not before the wheel of fortune had revolved a few times. Place
value systems require a way to indicate place. While the Babylo-
nians sidestepped the problem, hoping context or an empty space
would make it clear, Indian mathematicians introduced the symbol
“•” as a (literal) placeholder. This eventually morphed into the digit
“0”. In contrast to lumbering bases like sixty (probably chosen for
its compositeness) and ten (once again, replacing hands), it was now
possible to build a number system from 0 and 1 alone.

It took people a while to catch on. A full 1500 years after 0 first
appeared, German polymath Gottfried Wilhelm Leibniz began
to noodle around with binary arithmetic. Leibniz was a Sinophile
(among many other things) and learned that the “hexagrams” of the
Chinese Book of Changes corresponded to binary labels.1 He took this 1 To be clear, these did not constitute a

place value system.parallel—across a vast interval of time, language, and culture—as
proof of the underlying universality of human thought.

This universality would become one of his central preoccupations.
First, it suggested the possibility of a universal language or charac-
teristica universalis (“general characteristic”), which he envisioned as
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a fantastically expressive pictorial script “by which all concepts and
things [could] be put into beautiful order,”2 but which would be pre- 2 “On the General Characteristic” (1679).

cise enough to reason about mathematically. To actually perform this
reasoning, Leibniz introduced another powerful abstraction: the cal-
culus ratiocinator (“reasoning calculator”), a “general algebra in which
all truths of reason would be reduced to a kind of calculus.”3 Though 3 Letter to Nicolas Remond (1714).

George Boole (1815–1864). Son of a
Lincolnshire cobbler, heir of Leibniz.

less well-known than Leibniz’s work on infinitesimal calculus, the
characteristica and the ratiocinator are no less important. They laid the
conceptual foundations of modern digital programming (characteris-
tica) and computation (ratiocinator).

He didn’t live to see either utopian project realized. But a century
after Leibniz’s death, the wife of a downtrodden Lincolnshire cobbler
gave birth to a son. The cobbler was more enthusiastic about science
than shoes, and his child—George Boole—would leave school
early to pick up the slack, teach himself mathematics in his spare
time, and blaze the trail to a professorship at Queen’s University. He
would also build the “general algebra” that Leibniz had dreamt of,
and from the binary components of the characteristica, no less.

Boole’s crucial insight was that logic could be algebraized. If we
identify 1 with True and 0 with False, then basic logical operations
like AND (∧), OR (∨), and NOT (¬) become algebraic:

x∧ y = x · y, x ∨ y = x+ y− xy, ¬x = 1− x,

where x,y are variables representing propositions, and the opera-
{}{}

{a} {a, b}

{a} {b}

A concrete realization of Boolean algebra
using sets. Logical operations correspond to
set operations: union (∨), intersection (∧),
and complement (¬).

tions on the right are ordinary arithmetic. These observations are
surprisingly powerful. For instance, the algebraic fact that

1− xy = (1− x) + (1− y) − (1− x)(1− y)

is equivalent to De Morgan’s Law:

¬(x∧ y) = ¬x ∨ ¬y.

This structure, called a Boolean algebra, indeed reduces the
“truths of reason” to a remarkably simple calculus.4 4 See The Mathematical Analysis of Logic

(1847) and An Investigation of the Laws of
Thought (1854).

Let’s recap. We started counting 1s, ran out of fingers, drew on
rocks, ran out of room, invented sign value, place value, then 0, and
ported it all to lighter computers. That was good for a while, until a
strange little man with a wig started counting in 1s and 0s, noticed
the same in a 2500-year old Chinese divination manual, figured that
made a good case for a universal calculus, which a shoemaker’s son
cobbled together, from 1s and 0s, 150 years later. The scene was now
set for the return of the rocks.
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2 Computing at scale

Claude Shannon (1916–2001). The quiet
magician who tricked rocks into thinking.

Claude Elwood Shannon encountered the work of George Boole
as an undergraduate doing dual degrees in mathematics and electri-
cal engineering. Born in the dusty crossroads of Gaylord, Michigan,
Shannon enjoyed puzzles, games, and taking apart old machinery
only to reassemble it in surprising new ways. During his masters at
MIT, he was tasked with studying the “differential analyzer”. The
analyzer—a steampunk vision of electromechanical relays and ad
hoc circuitry—was built to solve differential equations (ironically
one of Boole’s main interests as a mathematician) and pioneered by
the brother of Lord Kelvin (one of Boole’s close friends). Shannon’s
fitting tribute to Boole was to deconstruct the messy circuitry of the
analyzer and systematically resynthesize it with Boolean algebra. In
the process, he invented modern digital circuitry.

After a postdoc at the Institute for Advanced Study (IAS)—where
Einstein called him “a brilliant, brilliant man”5—Shannon hopped 5 The Idea Factory (2013), Jon Gertner.

over the river from New Jersey to Bell Labs, then based in Manhattan.
A gaunt, courteous wizard who kept to himself (though he some-
times roamed the Labs by unicycle), he would abundantly justify
Einstein’s praise. Shannon went on to single-handedly create modern
cryptography, information and communication theory,6 establish- 6 See “A Mathematical Theory of

Cryptography” (1945), “A Mathematical
Theory of Communication” (1948).

ing that any contentful message could be converted into a stream
of 1s and 0s to be processed on the Boolean circuits he had devised
as a graduate student. This created a bridge from language to com-

Binary programming in silico, aka digital
circuits. These exist because we ran out of
fingers, and found a symbol for “ran out”.

putation, or in Leibnizian terms, the characteristica universalis to the
calculus ratiocinator. Shannon’s “A Symbolic Analysis of Relay and
Switching Circuits” may be the greatest masters thesis ever written,
but the sequel was better than the original.

A tally is a line scratched in rock; a circuit is lines drawn in metal.
Though ratiocinators would grow ever larger and more sophisticated,
becoming the smartphones and laptops and high-performance GPUs
we have today, many layers of abstraction down is a “general alge-
bra” of 1s and 0s, playing across the metal in bursts of current. It
took a few thousand years, but we tricked rocks into doing binary.

While at the IAS, Shannon crossed paths with John von Neu-
mann, the Hungarian-American mathematician and youngest fac-
ulty member at the Institute. The story goes that, by 1940, Shannon
had already struck upon his famous formula

S[p] = −

n∑
i=1

pi log2 pi = Ep[− log2 p]

for the amount of information contained in a probability distribution
p = (pi). But he struggled with the name, hesitating between “infor-
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mation” and “uncertainty”. Von Neumann offered a third option:7 7 “Energy and information” (1971),
Myron Tribus and Edward McIrving.

You should call it entropy, for two reasons. In the first place your uncer-
tainty function has been used in statistical mechanics under that name.
In the second place, and more importantly, no one knows what entropy
really is, so in a debate you will always have the advantage.8 8 “Torsor” may have been chosen ac-

cording to the same guiding principle.
It’s unlikely Shannon needed the advantage, but the name stuck.

Here’s Johnny! (1903–1957) A genius with
a strange urge to blow things up.

Von Neumann was, in many ways, the opposite of Shannon. Bois-
terous, earthy, outgoing, von Neumann hailed from Budapest, the
glittering capital of the Austro-Hungarian empire; Shannon was a
wallflower from the backwaters of the Midwest. During WWII, Shan-
non stayed at Bell Labs, hoping to quietly avoid the draft; von Neu-
mann signed up immediately and was rejected due to age, not zeal.
And where Shannon was thorough, methodical and focused, some-
times letting a problem steep for years, von Neumann was broad
and almost inhumanly quick, cutting a dazzling swathe through 20th
century mathematics both pure and applied. As Hans Bethe wrote9

9 “Passing of a Great Mind” (1957), Clay
Blair Jr.

I have sometimes wondered whether a brain like von Neumann’s does
not indicate a species superior to that of man.

Shannon called him the smartest man he had ever met. But despite
their differences, the two shared a yen for applied problems (both
had degrees in engineering) and would, increasingly, spend their
time thinking about computers, conduits of the entropy that Shannon
had fathered and von Neumann baptized.

While Shannon laid low, the war took von Neumann to Los
Alamos, where he worked with characteristic vigour on the science of
blowing things up. Part of this science was numerical, and involved a

ENIAC punch cards. As tallies led to sign
value, the inconvenience of punch cards led
to the “von Neumann” architecture.

new toy from the US Ballistic Research Laboratory: the Electronic

Numerical Integrator and Computer (ENIAC). ENIAC was
a little like the differential analyzer Shannon had studied, but larger,
faster, and most importantly, programmable. You could run differ-
ent programs simply by swapping out punch cards. Von Neumann
would develop some of the first, very primitive, programming lan-
guages in order to tell ENIAC how to run thermonuclear simulations.

Programming on punch cards is a bit like counting on fingers;
it only works for small problems. The architects of ENIAC (John

Mauchly and J. Presper Eckert) realized they needed a way
to store programs and data, and Eckert invented a clever memory
unit based on pinging signals through mercury. This was one of a
number of innovations bundled into ENIAC’s successor, the Elec-
tronic Discrete Variable Automatic Computer (EDVAC),
on which Mauchly and Eckert gave lectures in 1945. Von Neumann
took polished, comprehensive notes, peppered with original insights,
which an incautious colleague began to circulate; the notes went
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viral, quashing Mauchly and Eckert’s patent claims and leading to
the permanent misattribution “von Neumann architecture” for ED-
VAC’s design scheme. Von Neumann’s reputation preceded not only
himself, but his colleagues as well.

Whatever the precise division of credit, von Neumann was central
to the early history of computing at scale, creating the first protocols
for talking to ENIAC/EDVAC, its first applications, its first bespoke
algorithms (merge sort and Monte Carlo approximation with Stan
Ulam), and aspects of the first integrated, stored-program archi-
tecture. After the war, he would increasingly focus on methods for
large-scale numerical and scientific computing, including the first
climate-modeling software, run on ENIAC.10 We can only wonder 10 “Numerical Integration of the

Barotropic Vorticity Equation” (1950),
with Jule Charney and Ragnar Fjørtoft.

what else his marvelous organic brain might have achieved in concert
with the electronic brains at his disposal. Von Neumann died from
cancer in 1957, probably caused by wartime radiation exposure. He
left his mark on the bomb; it left its mark on him.

Richard P. Feynman (1918–1988). The folk
hero of the very small.

The Manhattan Project also left subtler marks. Von Neumann’s as-
sistant on the ENIAC simulations—handling punch card operations—
was a bright young theoretician called Richard Feynman. Feyn-
man would later win a Nobel Prize for his work on quantum elec-
trodynamics, and become legendary for his originality, intuition, and
goofy, homespun charm. In his autobiography,11 he makes his time at

11 Surely You’re Joking, Mr. Feynman!
(1985).

the Manhattan Project sound like a sequence of wise-cracking, safe-
cracking hijinks. But as historian Cathryn Carson soberly observes:12

12 “An Eden after the Fall” (1993).

The reality was somewhat grimmer: the coded letters, for instance,
were to his wife, his highschool sweetheart, dying of tuberculosis in
a cheap sanitorium outside Albuquerque. The real lessons Feynman
learned at Los Alamos [were] how to hide his feelings behind a brash
facade and how to excise unwelcome memories.

Feynman was perhaps less happy to estimate a death toll, or the
optimal height to detonate a bomb, than the hawkish von Neumann.

Feynman may have distanced himself emotionally by becoming
a “curious character,” the bongo-playing beatnik and hero of every
anecdote. But he also distanced himself scientifically. In contrast to

...

+

+

+

Feynman diagrams for an electron minding
its own business (aka the electron propa-
gator). The wiggles are virtual photons.

von Neumann, the champion of large-scale computation, Feynman
would turn to the physics of the very small. His Nobel Prize-winning
work made the leap from the quantum mechanics of point-like par-
ticles to spatially extended objects called fields, and thereby helped
establish the framework of quantum field theory. Perhaps his most fa-
mous contribution was a graphical technique called Feynman diagrams
for approximating the probability that one set of particles will collide
and transform into another set.

Feynman’s gift for the very small was not just theoretical. In 1959,
he gave a prescient lecture to the American Physical Society called
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“There’s Plenty of Room at the Bottom”, with the general theme of
tricking tiny rocks into doing our bidding. This more or less inspired
the field of nanotechnology. One thought experiment—adapted,
in fact, from von Neumann—was scaled replication, where a hierar-
chy of ever smaller robot hands is used to eventually build at the
nanoscale. The lecture wasn’t appreciated until the 80s when experi-
mental methods were finally up to the task of constructing molecular
machines. One of Feynman’s challenges—to print the Encyclopædia
Britannica on the head of a pin—was only cracked in 1985.

Edward Fredkin (1934–2023). Millionaire,
MIT professor and college dropout. Take
from that what you will.

While getting the Britannica to dance on the head of a pin is a
colourful Feynman-esque conceit, more intriguing was his brief men-
tion of miniaturizing computers, fifteen years after his ENIAC tour of
duty and ten years before the first microprocessor:

. . .there is plenty of room to make [computers] smaller. There is noth-
ing that I can see in the physical laws that says the computer elements
cannot be made enormously smaller than they are now. In fact, there
may be certain advantages.

These “advantages” were left mostly unspecified, and Feynman
moved on to other tasks—his Caltech lectures, the puzzles of par-
tons, a new Lagrangian-based approach to quantum mechanics—that
were more pressing and immediately soluble.

Feynman might never have returned to the problem were it not for
a college dropout called Edward Fredkin. Fredkin, a self-taught
programmer, floated between consulting, industry, and sporadic
faculty appointments at Carnegie Mellon and MIT. One such stint

x

y

x ∧ y

AND gate for the reversible billiard-ball
computer designed by Fredkin and Tomaso
Toffoli. A ball represents 1; its absence, 0.

was as Director of Project MAC at MIT (a predecessor of CSAIL)
from 1971–74; after three years he got bored, and decided to head
to Caltech to spend time with Feynman, who he’d met in 1962 and
found enjoyably provocative. They struck a deal. Fredkin would stay
for a year and teach Feynman about computing; Feynman would
teach him about quantum physics. Both were somewhat skeptical
about what was on offer, but committed to learning.

It was a slow burn win-win. Fredkin successfully mastered quan-
tum mechanics, but was unconvinced the universe could be funda-
mentally continuous (it didn’t compute!). He tranformed that resis-
tance into a successful research program for “digital physics”, where
discrete objects like cellular automata were used to effectively mock
up known physical laws. It also motivated him to explore reversible
computation, since all microscopic laws are time-reversal invariant.13 13 Technically, CPT-invariant, but we

won’t split hairs. See “Conservative
Logic” (1982), Fredkin and Toffoli.

The burn was slower for Feynman. He remained unsure that physics
and computation could be usefully connected; maybe, after the bomb,
he didn’t want to connect them.

Regardless, the two remained close, and in 1981, Fredkin invited
the physicist to give the keynote at an MIT conference on physics
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and computation. It was going to be a lot of digital physics “guff”
and Feynman was reluctant; he agreed, however, after Fredkin gave
him carte blanche on the topic. Feynman opened with this warm and
revealing tribute:14 14 “Simulating Physics with Computers”

(1982). On the other side of the Iron
Curtain, Yuri Manin independently had
the same idea in 1980.

The reason for doing this is something that I learned about from Ed
Fredkin, and my entire interest in the subject has been inspired by
him. It has to do with learning something about the possibilities of
computers, and also something about possibilities in physics.

Feynman’s hour-long address would explore the possibilities posed
by simulating the physics of the very small, propose a new type
of machine called a quantum computer to address it, and kickstart a

Spin- 12 particles have two states: up
|0⟩ and down |1⟩. Feynman also used
absent/present, like the billiard balls.

whole new field of computational science in the process.
Feynman’s intuition was simple: it should be easier to imitate

quantum physics with a computer running on quantum principles.
He gave a heuristic argument to this effect, and outlined a scheme for
universal quantum simulation using what he called spin-12 systems.
These have two possible states, usually denoted |1⟩ and |0⟩, so they
are the quantum analogue of a bit, also called a qubit. Though Feyn-

Quantum binary in silico, aka quantum
circuits. Quantum circuits exist because
small-scale simulation is hard.

man’s motivations were rather different from the assembled group,
many early contributors to quantum computing—Charles Bennett,
Norman Margolus, Tomaso Toffoli, and Fredkin himself—were
present at the talk. The way we reason about quantum computing,
using qubits, circuits, and reversible logic, bears their digital imprint.

It’s tempting (and indeed customary) to view the qubit as the
natural endpoint of this tortuous back-and-forth between human
and rock. We scratched in unary on rocks, etched binary in metal,
then listened carefully and let metal teach us a new type of binary.
Now we are scaling Feynman’s ladder in reverse and extrapolating
hardware from the very small to the macroscopic, hoping to perform
simulations more powerful than Feynman or von Neumann ever
dreamed of. It’s a nice story, and it happens to be the reality we live
in. But it didn’t have to be.

3 A fork in the roadmap

We can try to picture a different path. It starts around 3000 light
years away, with middle-aged couple danceing slowly through space.
T Coronae Borealis (T CrB) is a binary system in the constella-
tion Coronae Borealis and the figurative jewel in its crown, consisting
of a red giant and a white dwarf gradually accreting material from
its larger companion. Every 80 years or so, the white dwarf takes a
giant slurp of charged matter and blazes into view; this recurrent nova
briefly outshines most stars in the sky. It blazes not only in radiation,
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but sometimes lone protons, which are whipped around this stellar
cyclotron and flung out at close to the speed of light. We call these
protons cosmic rays.

T Coronae Borealis (1866–). The deus ex
stellae of our alternate timeline.

When cosmic rays hit the atmosphere, they fragment into a cas-
cade of secondary particles. This is a quantum process, described by
Feynman diagrams; the effect of a cosmic ray depends on the frag-
ments. In February 1946, T CrB went nova, with another luminosity
bump in June. In some quantum fork of history, a cosmic ray broke
up over Philadelphia, showered a bank of vacuum tubes with ioniz-
ing radiation, and knocked ENIAC offline a month before it was due
to be handed over to the military. The operators knew it couldn’t be
background radiation—that struck one tube at a time—and Mauchly
and Eckert, now running the Electronic Control Company, began to
speculate about new kinds of systemic failure. An Ordnance Corps
concerned about their strategically crucial, multi-million dollar in-
vestment requisitioned von Neumann from his efforts to design a
new stored-program computer at the IAS.15 15 See “Preliminary discussion of the

logical design of an electronic com-
puting instrument” (1946), Burks,
Goldstine, and von Neumann.

In July of 1946, Operation Crossroads16 would take place on Bikini

16 When history hands you a name this
perfect, you don’t refuse.

Atoll, where some physicists would receive possibly lethal doses of
radiation from the spectacular but mismanaged Baker test. In real-

The cosmic ray event at ENIAC that could
have saved John von Neumann’s life.

ity, von Neumann was one of these physicists; in the fork, he wasn’t
there. He was in Pennsylvania, where ENIAC’s flipped tubes re-
vealed a subtle directional gradient in ionization; from the time of
failure, the gradient pointed to a spot in the sky with right ascension
16 hours and declination +26◦. Then he was in Chicago, talking to
his old collaborator Subrahmanyan Chandrasekhar about radiative
transfer, then Pasadena to discuss novae with Walter Baade and cos-
mic showers with his old boss Oppenheimer. Finally, he flew back to
New Jersey, where he argued with Stibitz and Hamming at Bell Labs
and stayed up late playing chess with Shannon.

Von Neumann had immediately guessed the culprit was a cosmic
ray. The astrophysicists confirmed this guess and offered a candidate,
T CrB; Oppenheimer, adrift at Caltech, was happy to tease out the
energetics of fragmentation. At Bell, Hamming and Stibitz would
talk guardedly about error correction, while Shannon, with typical
modesty, would outline a foundational perspective on noisy channels.
Von Neumann took it all in, overlaid and interfered the conversa-
tions, and by the time he returned to Princeton had arrived at a novel
conclusion: instead of correcting cosmic rays, perhaps they could con-
trol them? After all, they had created “artificial” rays for implosion
imaging.17 Why not compute quantum with quantum? 17 See “Flash radiography with 24

GeV/c protons” (2011), C. Morris et al.In this version of reality, von Neumann was led to think about
quantum computing more than thirty years before Feynman. Feyn-
man had a genius for the miniscule; naturally, he wanted to use
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computers to understand his small friends better, and turned to
the techniques—states, transition amplitudes, diagrams, reversible
circuits—he was familiar with. The result is quantum computing as
we know it. Von Neumann, in contrast, was a near scale-invariant sci-
entist. He studied stars and planetary-scale weather systems, macro-
scopic architectures, and long before the war, laid the mathemati-
cal foundations for quantum mechanics. His goals and techniques
spanned many more orders of magnitude.

Let’s start at the bottom. Von Neumann worked with David

Hilbert
18 to define what we call Hilbert space. This is a vector space 18 See “Uber die Grundlagen der Quan-

tenmechanik” (1927), Hilbert and von
Neumann.

H over the complex numbers C, with an inner product ⟨, ·, ⟩ and
closed with respect to the induced norm.19 A state is a unit length 19 Loosely speaking, “closed” means

that any point we can approach arbi-
trarily closely is contained in H. The
induced norm is simply ∥x∥2 = ⟨x, x⟩.

vector in this space. This is the usual arena of quantum mechanics
and quantum computing. Ten years later, however, von Neumann
had become skeptical of the Hilbert space formalism, writing20

20 Quoted in “Why John von Neumann
did not Like the Hilbert Space Formal-
ism of Quantum Mechanics (and What
he Liked Instead)” (1996), Miklós Rédei.

Replacing states with projection operators,
or equivalently, the 0 and 1 eigenspaces.

I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space any more. . . Because: (1) The vectors
ought to represent the physical states, but they do it redundantly, up to
a complex factor, only (2) and besides, the states are merely a derived
notion, the primitive (phenomenologically given) notion being the
qualities which correspond to the linear closed subspaces. . .

By point (1), he means that a state |ψ⟩ ∈ H, and a state eiθ|ψ⟩ dif-
fering only by a phase, are physically equivalent. Point (2) takes as
“phenomonologically given” special operators Π : H → H satisfying

Π2 = Π, Π† = Π.

These are called projection operators, and the range VΠ = Π(H) of the
operator is a closed subspace of H. More physically, these projections
correspond to binary “yes”/”no” measurements, in the sense that the
eigenvalues are 0 (“no”) and 1 (“yes”).

This bears more than a little resemblance to classical bits and their
algebraic realization. Indeed, early in his career, von Neumann pi-
oneered the theory of operator algebras,21 where instead of studying 21 “On Rings of Operators I/II”

(1936/7), Murray and von Neumann.the vectors transformed by operators like Π, we study the algebraic
structure of the operators themselves. This led him organically to
the logical aspects of the problem, and he collaborated with Garret

Birkhoff on the lattice-theoretic characterization of closed linear
subspaces and many related problems. As Birkhoff put it, von Neu-
mann’s “brilliant mind blazed over lattice theory like a meteor”;22 22 “Von Neumann and lattice theory”

(1958), Garret Birkhoff.a recurrent nova might be a better analogy. Ultimately, though,
this “projective quantum logic” does not capture the true logical
power of the quantum, and can be efficiently simulated on a classical
computer.23 But an expertise in operator theory and quantum logic 23 “Nondeterministic testing of Sequen-

tial Quantum Logic propositions on a
quantum computer” (2005), Matt Leifer.

would have been fertile ground when the right seed came along.
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If von Neumann skipped the Bikini Atoll tests to troubleshoot
ENIAC, it’s plausible that Irving Segal, a promising young math-

Irving Ezra Segal (1918–1998). The
mathematical prophet from the Bronx.

ematician freshly decommissioned from the Ballistic Research Labo-
ratory, would have heard about it. Before the Laboratory, Segal had
worked on operator algebras with von Neumann at the IAS, where
he had incidentally overlapped with Shannon. He was planning to
return northeast to winter at Princeton and continue thinking about
algebras and quantum mechanics, two topics von Neumann had
mostly abandoned in favour of building thermonuclear weaponry.

Von Neumann’s original work focused on the properties of the
projections Π corresponding to binary measurements. In his view,
these operators would be the “phenomenologically given” analogue
of bits, rather than states like |0⟩ and |1⟩ in which he had “lost faith”.
The algebra of operators generated by these binary measurements
is called a von Neumann algebra.24 Like von Neumann, Segal wanted 24 After his paper “Zur Algebra der

Funktionaloperationen und Theorie der
normalen Operatoren” (1930).

to capture quantum mechanics algebraically, but he had a few new
desiderata. First, physics allows for measurements with richer out-
comes than simply “yes” or “no”. He was especially worried by the
“mathematical difficulties in quantum electrodynamics,”25 which 25 “Irreducible representations of opera-

tor algebras” (1947).Feynman was in the process of (non-rigorously) taming. Second, not
every operator on Hilbert space should be allowed; we might not be
able to measure it! Segal needed a formalism more expressive than
von Neumann algebras, and more selective than Hilbert space.

He found it in the work of two Russian mathematicians, Gelfand
and Naimark,26 who were trying to understand algebraic struc- 26 “On the embedding of normed rings

into the ring of operators in Hilbert
space” (1943), I. Gelfand, M. Naimark.

tures called normed rings, where you can add, multiply, and mea-
sure length. They found a clever way to embed these rings as a set
of operators on a Hilbert space. To Gelfand and Naimark, this was
merely a technical bridge; to Segal, it was the royal road from alge-
bra to quantum mechanics he had been seeking. The result of his
meditations at Princeton was a paper that baptized the normed rings

λ

In a general C*-algebra, we cannot reduce
every measurement to its projections.

C*-algebras, connected them to quantum mechanics, and improved
the embedding techniques. The method of identifying an abstract C*-
algebra with a concrete set of operators on a Hilbert space is called
the Gelfand-Naimark-Segal (GNS) construction in their honour.

To see how this algebra meets Segal’s criteria, note that in the
usual treatment of quantum mechanics, any self-adjoint linear oper-
ator T = T ∗ on Hilbert space is an observable. A C*-algebra is much
finer-grained; we include only the observables we care about, along
with the things we can generate from them. A von Neumann algebra
A also turns out to be a special type of C*-algebra where, for any
operator T ∈ A and eigenvalue λ of T , the projection ΠT ,λ onto the
λ-eigenspace of T is in A. But a general C*-algebra permits quantum
reality to be richer than yes/no answers can exactly capture.
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Segal would make a career out of deep, unexpected connections
between math and physics, helped in part by his stubborn and un-
yielding individuality. As his AMS obituary concludes,27 27 “Irving Ezra Segal (1918–1998)” in

AMS Notices (1999).
. . . the full impact of the work of Irving Ezra Segal will become known
only to future generations.

And in the words of John Baez:28 28 Ibid.

Everyone who knows Segal will recall his inability to do things any
way other than his own.

A short kid from the Bronx, Segal learned early to stand up for him-
self; a career in mathematical physics did not take the Bronx out of
the boy. Despite his evident genius, von Neumann did not have Se-
gal’s depth,29 though his breadth was unrivalled by any mathemati- 29 He was plagued by self-doubt, opin-

ing that he would be forgotten but
“Gödel remembered with Pythagoras.”

cian of the 20th century, perhaps history. If, by some cosmic glitch,
Johnny was spared from the Baker test and guided towards com-
puting with the quantum, deep might have converged with broad at
Princeton, the winter of 1946, for a project of mutual interest.

4 Through the looking glass

The left-hand side of Heisenberg’s uncer-
tainty principle, emblazoned in leadlight.

Imagine the two in the faculty lounge at Old Fine Hall, pulling out a
chalkboard to trade ideas; von Neumann with rapidfire cerebration,
Segal his Bronx one-two of prickle and boldness. Behind them, the
afternoon sun slants through stained-glass renderings of the uncer-
tainty principle and relativity. Segal confides his goal of axiomatizing
quantum mechanics with general normed rings, since, gesturing to-
wards the windows, he suspects that “a relativistic continuum may
not admit projections”. Von Neumann asks some questions, then sug-
gests in his offhand way a variant of Gelfand and Naimark’s method
of embedding the ring in Hilbert space, entirely ignorant of their re-
sults. Segal is wryly shocked, recovers, suggests improvements, and
the two go on, developing C*-algebras long into the evening.

They continue over the next few days, fleshing out the representa-
tion theory and the rudiments of an axiomatic treatment of quantum
fields. Von Neumann encounters a few little roadblocks, gets bored,
then like the projectiles he has spent so much time on, launches him-
self once more: heading over to engineering to blueprint designs
for an ENIAC successor, to Philadelphia to talk shop with Mauchly
and Eckhert, and finally to Washington to sit on a nuclear advisory
committee and nag the Weather Bureau for more money.

But the algebra won’t leave him alone. Von Neumann goes to sleep
one night thinking about ENIAC, programmability and the structure
of cosmic rays. . . The next day, he drives in a state of cheerful mania
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to Manhattan. The magician of Bell Labs receives him with courteous
surprise, and they walk to a park overlooking the Hudson:30 30 This dialogue, like the interaction

with Segal, is fictitious.
jvn: So, Shannon, you know the law of idempotency in a Boolean
algebra, x2 = x. [Shannon nods.] These variables are also commutative,
in the sense that x · y = y · x, so your AND connective doesn’t care
about order of conjuncts. There’s a noncommutative version of this

x y y x

A B = B A

=

Above, a commutative circuit where
switches, corresponding to Boolean vari-
ables, can be interchanged. Below, a non-
commutative circuit where switches are
C*-algebraic variables which cannot always
be interchanged.

where we replace Boolean variables by operators, and in particular we
could build our theory around projectors obeying Π2 = Π, so-called
because they project vectors onto a subspace. [Shannon pauses briefly,
then nods.] Good. Now, remember Irving, who was always disagreeing
with Einstein? [A smile.] Well, he found a clever way to take rings of
operators defined abstractly—like your Boolean algebra—and represent
them as transformations of a Hilbert space. I want to understand if we
can complete the parallelogram and build noncommutative circuits.

ces: I see. [Pause.] There is a perfect correspondence between the
terms of a Boolean formula and the structure of the relay or switch-
ing circuit because, after a suitable identification of the components,
physical laws of combination precisely match symbolic ones.

jvn: Yes yes, we need our algebraic laws to map onto the noncommu-
tative laws obeyed by our wires. Enter quantum theory. Guided by my
ancient work on orthocomplemented lattices, I have this [fishes napkin
out of suit pocket] mildly soiled design schematic for inducing transi-
tions in caesium. . . But what makes the circuits morally necessary?

ces: In what you call the “commutative” case, the hindrance of a
complex circuit is determined by the hindrance of its components.
[Long pause.] Hindrance means the passage of current, so I suppose
we can view this as a law by which aspects of the physical state of the
circuit are determined by the state of its components.

jvn: You mean “state” colloquially, but it’s also a mathematical term of
art for assigning numbers to operators, like current.

ces: Yes. I suppose a “state” here is a function assigning binary values
to each independent propositional variable. Equivalently, this is an
entry in a truth table. [Pause.] How is Segal’s construction related?

jvn: [Manic grin.] Ah, Shannon. Ah! The states of Segal’s embedding
are lines in the truth table. Irreducibility means restriction to the in-
volved variables. . . But all this is trivial. Now, the question I pose to
you, say Stibitz, Hamming of course, maybe Bardeen: can we build it?

A
B

C

A D

A
B

C

A D

C*-algebraic programming in silico, aka
noncommutative circuits. These circuits do
not exist, but might have if a cosmic ray
struck ENIAC.

Von Neumann leaves West Village with visions of “noncommutative
architectures,” algebras as data and states as programs, his mind rac-
ing into the future. Shannon mentions the conversation to Mervin
Kelly, director of research at Bell Labs, who thinks it over, heads to
Princeton, and on his return quietly commissions a new research pro-
gram. In branch T CrB, the rocks instructed us to replace hindrance
with expectation, truth-tables with GNS, and Boolean algebras with
functional analysis. This is not the branch we live in. But with a little
imagination and some mathematical elbow grease, we can catch up.
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5 A Westbeth postscript

The mad puppets of Ralph Lee (1936–2023),
oblique testament to the spirit of Bell Labs.

Visiting the old Bell Laboratories Building at 463 West Street, it’s
hard to detect the genius loci that moved it in former times. In the
60s, Bell moved its operations from Manhattan to a shiny new facil-
ity in New Jersey, and the West Street complex was converted into
Westbeth Artists Community, the largest artist cooperative in the
world. Its roster of luminaries includes photographer Diane Arbus,
the choreographer Merce Cunningham, and puppeteer Ralph Lee,
whose shambolic creatures still grace the commune in unexpected
corners. It is more Coney Island than Wall Street.

After hours, I snuck in behind a departing resident and found
myself in an interstitial maze of shoebox consultancies, potters’ stu-
dios, office space, and miscellaneous storage, a wunderkammer of
uninterpretable objects. . . I turned around and left before I could get
irrevocably lost. Back in the courtyard, I understood that the spirit of
Bell Labs remained alive in Westbeth: in its organized shaping of cre-
ative energies, its zest for human excellence, in scale and the network
effects that come from so many unusual minds melting in the same
pot. Shannon made theories in the same way that Lee made puppets:
from an urge to make something beautiful, strange and new in the
world, and from that urge alone.

The bricks have many stories to tell; Westbeth listens. Standing in
the courtyard, I too strain to hear, and erect the puppets of von Neu-
mann and Shannon a hundred yards away in the process. But there
the whispers die; the rocks can only tell us so much. The work of
building a noncommutative ratiocinator, the high-level characteristica
to go with it, and a broader institutional culture of rock-listening—
completing the arc of that proton over Philadelphia—is left to us.

References

[1] Baez, J. C., Beschler, E. F., Gross, L., Kostant, B., Nelson,
E., Vergne, M., and Wightman, A. S. Irving Ezra Segal
(1918–1998). In Notices of the American Mathematical Society,
A. M. Society, Ed., vol. 46. American Mathematical Society, 1999.

[2] Birkhoff, G. Von Neumann and lattice theory. Bulletin of the
American Mathematical Society 64, 3 (May 1958), 50–56.

[3] Blair, Jr., C. Passing of a great mind. Fortune (1957).

[4] Boole, G. An Investigation of the Laws of Thought: On Which
Are Founded the Mathematical Theories of Logic and Probabilities.
Cambridge University Press, 2009.



a short history of rocks 16

[5] Boole, G. The Mathematical Analysis of Logic: Being an Essay
Towards a Calculus of Deductive Reasoning. Cambridge University
Press, 2009.

[6] Burks, A. W., Goldstine, H. H., and von Neumann, J. Prelimi-
nary discussion of the logical design of an electronic computing
instrument, 1946.

[7] Carson, C. L. An Eden after the Fall. Reviews in American
History 21, 3 (1993), 514–519.

[8] Charney, J. G., Fjörtoft, R., and von Neumann, J. Numerical
integration of the barotropic vorticity equation. Tellus 2 (1950),
237–254.

[9] Feynman, R., Leighton, R., and Hutchings, E. "Surely You’re
Joking, Mr. Feynman!": Adventures of a Curious Character. Vintage,
1992.

[10] Feynman, R. P. There’s plenty of room at the bottom: An invi-
tation to enter a new field of physics. In Miniaturization, H. D.
Gilbert, Ed. Reinhold, 1961.

[11] Feynman, R. P. Simulating physics with computers. International
Journal of Theoretical Physics 21, 6/7 (1982), 467–488.

[12] Fredkin, E. F., and Toffoli, T. Conservative logic. International
Journal of Theoretical Physics 21, 3/4 (1982), 219–253.

[13] Gelfand, I., and Naimark, M. On the imbedding of normed
rings into the ring of operators in hilbert space. Sbornik Mathe-
matics 54, 2 (1943), 197–217.

[14] Gertner, J. The Idea Factory: Bell Labs and the great age of Ameri-
can innovation. Penguin Books, New York, 2013.

[15] Hilbert, D., von Neumann, J., and Nordheim, L. Über die
grundlagen der quantenmechanik. Mathematische Annalen 98
(1928), 1–30.

[16] Leibniz, G. W. Letters To Nicolas Remond. Springer Netherlands,
Dordrecht, 1989, pp. 654–660.

[17] Leibniz, G. W. On the General Characteristic. Springer Nether-
lands, Dordrecht, 1989, pp. 221–228.

[18] Leifer, M. S. Nondeterministic testing of sequential quantum
logic propositions on a quantum computer, 2005.



a short history of rocks 17

[19] Morris, C. L., Ables, E., Alrick, K. R., Aufderheide, M. B.,
Barnes, P. D., J., Buescher, K. L., Cagliostro, D. J., Clark,
D. A., Clark, D. J., Espinoza, C. J., Ferm, E. N., Gallegos,
R. A., Gardner, S. D., Gomez, J. J., Greene, G. A., Hanson, A.,
Hartouni, E. P., Hogan, G. E., King, N. S. P., Kwiatkowski,
K., Liljestrand, R. P., Mariam, F. G., Merrill, F. E., Morgan,
D. V., Morley, K. B., Mottershead, C. T., Murray, M. M., Pazu-
chanics, P. D., Pearson, J. E., Sarracino, J. S., Saunders, A.,
Scaduto, J., Schach von Wittenau, A. E., Soltz, R. A., Ster-
benz, S., Thompson, R. T., Vixie, K., Wilke, M. D., Wright,
D. M., and Zumbro, J. D. Flash radiography with 24 GeV/c
protons. Journal of Applied Physics 109, 10 (05 2011), 104905.

[20] Murray, F. J., and von Neumann, J. On rings of operators.
Bulletin of the American Mathematical Society 42 (1936).

[21] Murray, F. J., and von Neumann, J. On rings of operators
(II). Transactions of the American Mathematical Society 41, 2 (1937),
208–248.

[22] Rédei, M. Why John von Neumann did not like the Hilbert
space formalism of quantum mechanics (and what he liked
instead). Studies in History and Philosophy of Modern Physics 27, 4

(1996), 493–510.

[23] Segal, I. E. Irreducible representations of operator algebras.
Bulletin of the American Mathematical Society 53, 2 (1947), 73 – 88.

[24] Shannon, C. E. A mathematical theory of cryptography, 1945.

[25] Shannon, C. E. A mathematical theory of communication. The
Bell System Technical Journal 27 (1948), 379–423.

[26] Tribus, M., and McIrvine, E. C. Energy and information.
Scientific American 225, 3 (1971), 179–190.

[27] von Neumann, J. Zur algebra der funktionaloperatoren und
theorie der normalen operatoren. Mathematische Annalen 102
(1929), 370–427.

colophon

This document is typeset using the Tufte-LATEX document class,
with Palatino as the body font, IBM Plex Mono for teletype, and
AMSEuler for math. The primary visual inspiration was the Life Na-
ture Library, volumes of which can be found in any reputable thrift
shop. Illustrations were create with a combination of Midjourney,
Inkscape, and public domain images. Finally, this is distributed under
a CC BY-NC-ND license; feel free to redistribute in its current form, but
if you wish to modify or use specific parts, please ask me directly.

https://tufte-latex.github.io/tufte-latex/
https://fonts.google.com/specimen/IBM+Plex+Mono
https://en.wikipedia.org/wiki/Life_Nature_Library
https://en.wikipedia.org/wiki/Life_Nature_Library
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

	1   The other calculus
	2   Computing at scale
	3   A fork in the roadmap
	4   Through the looking glass
	5   Postscript

